3.1.94 \(\int \frac {(g \cos (e+f x))^{3/2} \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{5/2}} \, dx\) [94]

3.1.94.1 Optimal result
3.1.94.2 Mathematica [C] (verified)
3.1.94.3 Rubi [A] (verified)
3.1.94.4 Maple [C] (warning: unable to verify)
3.1.94.5 Fricas [C] (verification not implemented)
3.1.94.6 Sympy [F(-1)]
3.1.94.7 Maxima [F]
3.1.94.8 Giac [F(-1)]
3.1.94.9 Mupad [F(-1)]

3.1.94.1 Optimal result

Integrand size = 42, antiderivative size = 182 \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{5/2}} \, dx=\frac {4 a (g \cos (e+f x))^{5/2}}{5 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}}-\frac {6 a (g \cos (e+f x))^{5/2}}{5 c f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}+\frac {6 a g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{5 c^2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \]

output
4/5*a*(g*cos(f*x+e))^(5/2)/f/g/(c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^(1/ 
2)-6/5*a*(g*cos(f*x+e))^(5/2)/c/f/g/(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e) 
)^(1/2)+6/5*a*g*(cos(1/2*f*x+1/2*e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*EllipticE( 
sin(1/2*f*x+1/2*e),2^(1/2))*cos(f*x+e)^(1/2)*(g*cos(f*x+e))^(1/2)/c^2/f/(a 
+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)
 
3.1.94.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 3.83 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.26 \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{5/2}} \, dx=\frac {4 i g \sqrt {e^{-i (e+f x)} \left (1+e^{2 i (e+f x)}\right ) g} \left (\left (5+4 i e^{i (e+f x)}-3 e^{2 i (e+f x)}\right ) \sqrt {1+e^{2 i (e+f x)}}+e^{i (e+f x)} \left (-i+e^{i (e+f x)}\right )^3 \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (e+f x)}\right )\right ) \sqrt {a (1+\sin (e+f x))}}{5 c \left (i c e^{-i (e+f x)} \left (-i+e^{i (e+f x)}\right )^2\right )^{3/2} \left (i+e^{i (e+f x)}\right ) \sqrt {1+e^{2 i (e+f x)}} f} \]

input
Integrate[((g*Cos[e + f*x])^(3/2)*Sqrt[a + a*Sin[e + f*x]])/(c - c*Sin[e + 
 f*x])^(5/2),x]
 
output
(((4*I)/5)*g*Sqrt[((1 + E^((2*I)*(e + f*x)))*g)/E^(I*(e + f*x))]*((5 + (4* 
I)*E^(I*(e + f*x)) - 3*E^((2*I)*(e + f*x)))*Sqrt[1 + E^((2*I)*(e + f*x))] 
+ E^(I*(e + f*x))*(-I + E^(I*(e + f*x)))^3*Hypergeometric2F1[1/2, 3/4, 7/4 
, -E^((2*I)*(e + f*x))])*Sqrt[a*(1 + Sin[e + f*x])])/(c*((I*c*(-I + E^(I*( 
e + f*x)))^2)/E^(I*(e + f*x)))^(3/2)*(I + E^(I*(e + f*x)))*Sqrt[1 + E^((2* 
I)*(e + f*x))]*f)
 
3.1.94.3 Rubi [A] (verified)

Time = 1.32 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {3042, 3329, 3042, 3331, 3042, 3321, 3042, 3121, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a \sin (e+f x)+a} (g \cos (e+f x))^{3/2}}{(c-c \sin (e+f x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \sin (e+f x)+a} (g \cos (e+f x))^{3/2}}{(c-c \sin (e+f x))^{5/2}}dx\)

\(\Big \downarrow \) 3329

\(\displaystyle \frac {4 a (g \cos (e+f x))^{5/2}}{5 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}-\frac {3 a \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{3/2}}dx}{5 c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4 a (g \cos (e+f x))^{5/2}}{5 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}-\frac {3 a \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{3/2}}dx}{5 c}\)

\(\Big \downarrow \) 3331

\(\displaystyle \frac {4 a (g \cos (e+f x))^{5/2}}{5 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}-\frac {3 a \left (\frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {\int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {\sin (e+f x) a+a} \sqrt {c-c \sin (e+f x)}}dx}{c}\right )}{5 c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4 a (g \cos (e+f x))^{5/2}}{5 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}-\frac {3 a \left (\frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {\int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {\sin (e+f x) a+a} \sqrt {c-c \sin (e+f x)}}dx}{c}\right )}{5 c}\)

\(\Big \downarrow \) 3321

\(\displaystyle \frac {4 a (g \cos (e+f x))^{5/2}}{5 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}-\frac {3 a \left (\frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {g \cos (e+f x) \int \sqrt {g \cos (e+f x)}dx}{c \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}\right )}{5 c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4 a (g \cos (e+f x))^{5/2}}{5 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}-\frac {3 a \left (\frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {g \cos (e+f x) \int \sqrt {g \sin \left (e+f x+\frac {\pi }{2}\right )}dx}{c \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}\right )}{5 c}\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {4 a (g \cos (e+f x))^{5/2}}{5 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}-\frac {3 a \left (\frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} \int \sqrt {\cos (e+f x)}dx}{c \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}\right )}{5 c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4 a (g \cos (e+f x))^{5/2}}{5 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}-\frac {3 a \left (\frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} \int \sqrt {\sin \left (e+f x+\frac {\pi }{2}\right )}dx}{c \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}\right )}{5 c}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {4 a (g \cos (e+f x))^{5/2}}{5 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}-\frac {3 a \left (\frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {2 g \sqrt {\cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{c f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}\right )}{5 c}\)

input
Int[((g*Cos[e + f*x])^(3/2)*Sqrt[a + a*Sin[e + f*x]])/(c - c*Sin[e + f*x]) 
^(5/2),x]
 
output
(4*a*(g*Cos[e + f*x])^(5/2))/(5*f*g*Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e 
+ f*x])^(5/2)) - (3*a*((2*(g*Cos[e + f*x])^(5/2))/(f*g*Sqrt[a + a*Sin[e + 
f*x]]*(c - c*Sin[e + f*x])^(3/2)) - (2*g*Sqrt[Cos[e + f*x]]*Sqrt[g*Cos[e + 
 f*x]]*EllipticE[(e + f*x)/2, 2])/(c*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c 
*Sin[e + f*x]])))/(5*c)
 

3.1.94.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3321
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[g* 
(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]))   Int[(g 
*Cos[e + f*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ 
[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]
 

rule 3329
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2 
*b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f* 
x])^n/(f*g*(2*n + p + 1))), x] - Simp[b*((2*m + p - 1)/(d*(2*n + p + 1))) 
 Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^( 
n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c + a*d, 0] & 
& EqQ[a^2 - b^2, 0] && GtQ[m, 0] && LtQ[n, -1] && NeQ[2*n + p + 1, 0] && In 
tegersQ[2*m, 2*n, 2*p]
 

rule 3331
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b* 
(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(a* 
f*g*(2*m + p + 1))), x] + Simp[(m + n + p + 1)/(a*(2*m + p + 1))   Int[(g*C 
os[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] 
/; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - 
b^2, 0] && LtQ[m, -1] && NeQ[2*m + p + 1, 0] &&  !LtQ[m, n, -1] && Integers 
Q[2*m, 2*n, 2*p]
 
3.1.94.4 Maple [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 1.23 (sec) , antiderivative size = 1492, normalized size of antiderivative = 8.20

method result size
default \(\text {Expression too large to display}\) \(1492\)

input
int((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(5/2),x,m 
ethod=_RETURNVERBOSE)
 
output
1/10/f*(a*(1+sin(f*x+e)))^(1/2)*(g*cos(f*x+e))^(1/2)*g/(-c*(sin(f*x+e)-1)) 
^(1/2)/(-cos(f*x+e)/(1+cos(f*x+e))^2)^(3/2)/(1+cos(f*x+e))^3/c^2*(-24*I*(1 
/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(csc( 
f*x+e)-cot(f*x+e)),I)*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)-12*I*(1/(1+cos( 
f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-c 
ot(f*x+e)),I)*cos(f*x+e)*sin(f*x+e)*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)-1 
2*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I 
*(csc(f*x+e)-cot(f*x+e)),I)*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*tan(f*x+e 
)+24*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*Elliptic 
E(I*(csc(f*x+e)-cot(f*x+e)),I)*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*sin(f* 
x+e)+12*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*Ellip 
ticE(I*(csc(f*x+e)-cot(f*x+e)),I)*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*tan 
(f*x+e)-24*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*El 
lipticF(I*(csc(f*x+e)-cot(f*x+e)),I)*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)* 
sin(f*x+e)+12*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2) 
*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)*cos(f*x+e)*sin(f*x+e)*(-cos(f*x+e) 
/(1+cos(f*x+e))^2)^(1/2)+12*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos( 
f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)*(-cos(f*x+e)/(1+cos( 
f*x+e))^2)^(1/2)*sec(f*x+e)-12*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+c 
os(f*x+e)))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)*(-cos(f*x+e)/(...
 
3.1.94.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 211, normalized size of antiderivative = 1.16 \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{5/2}} \, dx=-\frac {2 \, \sqrt {g \cos \left (f x + e\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} {\left (3 \, g \sin \left (f x + e\right ) - g\right )} + 3 \, {\left (i \, \sqrt {2} g \cos \left (f x + e\right )^{2} + 2 i \, \sqrt {2} g \sin \left (f x + e\right ) - 2 i \, \sqrt {2} g\right )} \sqrt {a c g} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )\right ) + 3 \, {\left (-i \, \sqrt {2} g \cos \left (f x + e\right )^{2} - 2 i \, \sqrt {2} g \sin \left (f x + e\right ) + 2 i \, \sqrt {2} g\right )} \sqrt {a c g} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )\right )}{5 \, {\left (c^{3} f \cos \left (f x + e\right )^{2} + 2 \, c^{3} f \sin \left (f x + e\right ) - 2 \, c^{3} f\right )}} \]

input
integrate((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(5/ 
2),x, algorithm="fricas")
 
output
-1/5*(2*sqrt(g*cos(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) 
 + c)*(3*g*sin(f*x + e) - g) + 3*(I*sqrt(2)*g*cos(f*x + e)^2 + 2*I*sqrt(2) 
*g*sin(f*x + e) - 2*I*sqrt(2)*g)*sqrt(a*c*g)*weierstrassZeta(-4, 0, weiers 
trassPInverse(-4, 0, cos(f*x + e) + I*sin(f*x + e))) + 3*(-I*sqrt(2)*g*cos 
(f*x + e)^2 - 2*I*sqrt(2)*g*sin(f*x + e) + 2*I*sqrt(2)*g)*sqrt(a*c*g)*weie 
rstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(f*x + e) - I*sin(f*x + e 
))))/(c^3*f*cos(f*x + e)^2 + 2*c^3*f*sin(f*x + e) - 2*c^3*f)
 
3.1.94.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate((g*cos(f*x+e))**(3/2)*(a+a*sin(f*x+e))**(1/2)/(c-c*sin(f*x+e))** 
(5/2),x)
 
output
Timed out
 
3.1.94.7 Maxima [F]

\[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{5/2}} \, dx=\int { \frac {\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}} \sqrt {a \sin \left (f x + e\right ) + a}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(5/ 
2),x, algorithm="maxima")
 
output
integrate((g*cos(f*x + e))^(3/2)*sqrt(a*sin(f*x + e) + a)/(-c*sin(f*x + e) 
 + c)^(5/2), x)
 
3.1.94.8 Giac [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(5/ 
2),x, algorithm="giac")
 
output
Timed out
 
3.1.94.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{5/2}} \, dx=\int \frac {{\left (g\,\cos \left (e+f\,x\right )\right )}^{3/2}\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{5/2}} \,d x \]

input
int(((g*cos(e + f*x))^(3/2)*(a + a*sin(e + f*x))^(1/2))/(c - c*sin(e + f*x 
))^(5/2),x)
 
output
int(((g*cos(e + f*x))^(3/2)*(a + a*sin(e + f*x))^(1/2))/(c - c*sin(e + f*x 
))^(5/2), x)